Pulse Sequence for the Generation of a 13C Subspectrum of both Aromatic and Aliphatic Quaternary Carbons

M. Robin Bendall,*a David T. Pegg,a David M. Doddrell,a Stanley R. Johns,b and Richard I. Willing b

^a*School of Science, Griffith University, Nathan, Queensland, 41 1 1 Australia* b *Division of Applied Organic Chemistry, C.S.I.R.O., Box 4331 G.P.O., Melbourne, Victoria, 3001 Australia*

A simple heteronuclear spin-echo pulse sequence is described which provides an accurate **I3C** subspectrum of just aromatic and aliphatic quaternary carbons, especially when the method is applied in conjunction with the recent distortionless enhancement by polarisation transfer (DEPT) sequence.

Modified spin-echo sequences have been used to separate accurately a 13 C spectrum into separate methyl/methine (CH₃/CH) and methylene/quaternary (CH₂/q) subspectra¹⁻³ and the latter have been further separated into separate CH₂ and q subspectra,^{4,5} even when the single-bond ¹³C⁻¹H J value, assumed in setting the free precession periods in the sequences, varies significantly from the actual values. However, accurate separation of $CH₃/CH$ spectra is not possible by spin-echo sequences.^{3,6} Recently we have achieved accurate CH₃, CH₂, and CH subspectra using the DEPT sequence,^{7,8} a generalisation of the EPT sequence.^{3,6} Quaternary resonances do not appear in DEPT spectra. Unfortunately, it is not possible to produce an accurate q subspectrum by subtracting the DEPT subspectra from a normal spectrum because of the different efficiencies of polarization transfer and nuclear Overhauser enhancement. An independent method is required. The randomisation spin-echo method $4,5$ is too time-consuming if it is additional to DEPT. The SEBBORD method⁹ is accurate only for the aromatic region. 5

The simple spin-echo technique has been used to generate just a q subspectrum.112 The gated-decoupled sequence **(A)** is the simplest variation of this method. **A** simple analysis sequence **(A)** in terms of the Heisenberg vector model shows that when actual coupling constants differ by ΔJ from the value assumed in the sequence (J) , residual error signals of magnitude $\sin^{n}(\pi/2)(\Delta J/J)$ result for CH_n groups (n = 1, 2, or 3).⁵ Although the errors are small for $CH₂$ and $CH₃$ groups, they are quite significant for CH groups. For a 10% divergence of J, for example, the error is 15.6% of full intensity. These unwanted large residual signals are further illustrated in Figure 1(a)-(c). As illustrated in Figure 1(e)-(h), sequence **(B)** shows dramatically reduced error signals. For example, compare Figure 1(g) with Figure 1(a) or (b).

The mechanism of sequence **(B)** is quite straightforward. As in sequence (A), the only purpose of the π pulse is to refocus chemical shift. The π pulse should be alternated through all four phases, with inversion of receiver phase for 90° shifts, to eliminate errors arising from the pulse.^{5,10} After the first $(2J)^{-1}$ *s* period in both sequences, magnetization

³C $\frac{\pi}{2}$ $\frac{1}{2}$ $\frac{\pi}{2}$ $\frac{1}{2}$ $\frac{\pi}{2}$ $\frac{1}{2}$ $\frac{1}{$ **I** *I* **I I ^I**(4 **2** $\frac{1}{2}$ **i**

vector components have precessed in the transverse plane because of coupling with the attached protons, so that for any CH_n group they are 180° out-of-phase to each other.^{2,4} The decoupling in sequence **(A)** freezes this precession and the components mutually cancel. In contrast, the $(\pi/2)$ [H] pulse in sequence **(B)** acts so that each vector component splits into new additional components which precess as usual in the second $(2J)^{-1}$ s period, but mutually cancel because for every component there is an equal and opposite one.¹¹ In both sequences, for divergent J values the various vector components are not exactly 180° out-of-phase after the first $(2J)^{-1}$ s period and cannot exactly cancel each other. For sequence (A) this leads to the residual signals as quantified above, and which are large for CH groups. However, for sequence **(B)** the residual magnetizations left after the $(\pi/2)$ [H] pulse split into vector components which precess almost 180" apart during the second $(2J)^{-1}$ s period [in the same way as during the first $(2J)^{-1}$ s period], thus reducing the errors to sin²ⁿ- $(\pi/2)(\Delta J/J)$ for CH_n groups $(n = 1, 2, \text{ or } 3)$. Figure 1(e)--(h) clearly demonstrates the superior cancellation accuracy of sequence **(B).** For example, a **10%** divergence in J for a CH group theoretically gives only a 2.4 % error signal.

Residual CH and CH, error signals will be positive or negative using sequence (A), when the actual *J* is smaller or larger than the assumed J respectively^{1,2} [e.g. the low-field CH resonance in Figure 1(a)—(c)], but sequence (B) can only give positive errors. Positive or negative signals will, however, result for sequence (B) if the $(\pi/2)$ [H] pulse time is smaller or larger than ideal, respectively.¹¹ In routine use the $(2J)^{-1}$ s periods should be set to a compromise value corresponding to a J value of, say, 135 Hz. The $(\pi/2)$ [H] pulse time can then be set to a value slightly larger than the exact 90° time, using a known compound, by ensuring that CH resonances with J close to 135 Hz give slightly negative signals and CH groups with *J* divergent by, say, 10% give approximately zero signals. This has been done for Figure $l(e)$ —(h) and in routine use such an adjustment requires only a few minutes work. This method has the effect of significantly reducing the errors expected from the above CH formula for sequence (B).

For $CH₂$ groups only positive error signals result if J or $(\pi/2)[H]$ is mis-set or if the $(\pi/2)[H]$ pulse is inhomogeneous.^{1,2,4,11} When used in conjunction with the DEPT sequence, a small percentage of a DEPT $CH₂$ subspectrum may be subtracted from the sequence **(B)** spectrum as has been done for Figure 1(f)—(h) to reduce the positive $CH₂$ errors. However, in routine ¹H multiplicity determination we have found this pursuit of perfection unnecessary.

If J 135 **Hz** is assumed for sequence **(B),** aromatic and olefinic **CH** groups will give positive errors of *ca.* **6%.** A perfect aromatic quaternary spectrum can be obtained by repeating the experiment with J *ca.* 160 **Hz** assumed. However, if used in conjunction with DEPT, the latter is unnecessary because the *ca.* 6% errors in the aromatic region can be subtracted using the DEPT CH spectrum. We have found sequence **(B)** to be an excellent addition to the DEPT method which we believe

Figure 1. Partial ¹³C spectra of cholesterol at 75.46 MHz. (a) Sequence (A), assumed J 125 Hz; (b) sequence (A), assumed J 137 Hz; (c) sequence (A), assumed J 137 Hz; (c) sequence (A), assumed J 150 Hz; (d) normal spe

to be the best method for editing **13C** spectra presently available.

This research was conducted on a Bruker **CXP-300** spectrometer owned by the Brisbane NMR Centre and sited at Griffith University, and checked using a WM-250 spectrometer (C.S.I.R.O., Melbourne).

Received, 26th July 1982; Corn. 877

References

- 1 D. **J.** Cookson and B. *E.* Smith, *Org. Map. Resun.,* 1981, **16,** 11 1 ; C. Le **Cocq** and **J.-Y.** Lallemand, *J. Chem. Suc., Chem. Cummun.,* 1981, 150; D. **W.** Brown, **T.** T. Nakashima, and D. L. Rubenstein, *J. Magn. Reson.*, 1981, 45, 302.
- **2** M. R. Bendall, D. **M.** Doddrell, and D. **T.** Pegg, *J. Am. Chem. SOC.,* 1981, **103,** 4603.
- 3 **M.** R. Bendall, D. **T.** Pegg, D. **M.** Doddrell, and D. H. Williams, *J. Org. Chem.,* 1982, **47,** 3021.
- **4** D. T. Pegg, **M.** R. Bendall, and D. M. Doddrell, *J. Magn. Resun.,* 1982,49,32.
- 5 M. R. Bendall, D. T. Pegg, and D. M. Doddrell, *J. Magn. Reson.,* submitted for publication.
- *6 M.* R. Bendall, D. T. Pegg, and D. **M.** Doddrell, *J. Chern. Suc., Chem. Commun.,* 1982, 872.
- 7 D. M. Doddrell, D. T. Pegg, and M. R. Bendall, *J. Magn. Resun.,* 1982, **40,** 323.
- 8 *D.* T. Pegg, D. M. Doddrell, and M. R. Bendall, *J. Chem. Phys.,* 1982, in the press.
- **9** D. **J.** Cookson, B. **E.** Smith, and N. White, *J. Chern. Suc., Chem. Commun.*, 1981, 12.
- 10 *G.* Bodenhausen, R. Freeman, and D. L. Turner, *J. Magn. Resun.,* 1977, *27,* 511.
- 11 *D. T.* Pegg, **M.** R. Bendall, and D. *M.* Doddrell, *J. Magn. Reson.,* 1981, **44,** 238.